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LETTER TO THE EDITOR 

Synchronization of coupled oscillations: an analysis of the 
comparator model 
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Paris, France 
i lnstitul National des Tdkcommunications, 9 rue Charles Fourier, 9101 1 Evry, France 
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Abstract. We present a model for the study of the synchronization between coupled 
limit-cycle oscillators This model is motivated by the recent observations that revealed the 
existence of synchronization in the firing patterm of neural cells. Our study is based on a 
panicular coupling architecture where all the oscillators are coupled to a comparator Unit 
that feeds back IO each oscillator the mean value of the total phase. The various regimes 
of this model are analysed in the presence of non-uniform external driving. 

The comparator model has been recently proposed as a synchronization mechanism 
for limit-cycle oscillators [l]. The main motivation is neurobiological. Indeed, detailed 
experiments have shown the existence of signal synchronization in various sensory 
systems submitted to an external stimulus. In the mammalian visual cortex, for example, 
strong stimulus-dependent oscillations of neural activities (35-80 Hz) have been recor- 
ded by several authors [2,3]. The neurons fire in synchrony provided common stimulus 
features drive the assembly simultaneously. A striking fact is that this type ofsynchroniz- 
ation occurs also in other sensory systems under very different spatia-temporal shapes 
of the external stimulus: from well-timed signals in the auditory system to weak and 
sluggish signals in the olfactory one [4]. Eckhorn et al [5] propose an explanation by 
introducing two, complementary, types of synchronization: stimulus-forced synchroniz- 
ations are directly driven by stimulus transients and establish fast but crude sketches 
of association in the visual cortex, while stimulus-induced synchronizations are inter- 
nally generated by some coupling effect between stimulus-activated oscillators which 
allows the formation of more refined shapes. 

Several theoretical models have appeared aiming at the description of the syn- 
chronization phenomenon [ 1.6.71. An approach favoured by several authors combines 
two ingredients. First, a description of the activity of the basic unit is provided [8]: 
this unit can be a single neuron or a collection of neurons (such as the cortical columns). 
Second, an architecture for the coupling between the oscillatory units is chosen. Thus 
the model consists, in fact, of a collection of coupled oscillators. Following the results 
of Koppel and Ermentrout [9], we will make the assumption that it is possible to 
describe the system by the evolution of the oscillator phases once they have relaxed 
to their limit cycles. A single oscillator can then be described by a unique parameter: 
its phase t+ along the limit cycle. Thus the behaviour of a population of N interacting 
oscillators can be approximated by the system: 
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Let us now give a biological interpretation of (1). The quantity Oj can be related to 
the time at which a given cell i generates an action potential. The quantity wi plays 
the role of an external (rhythmic) stimulus, while the phase variation ej is related to 
the firing frequency of the neuron and depends crucially on the stimulus mi. Following 
general arguments, the function f must be odd. This implies that, in the absence of 
external input mi,  the phase relaxes to zero and the neuron becomes quiescent. 

This letter is devoted to the detailed analysis of the comparator model of coupling 
between the different oscillatory units. In this model each neuron of the system is 
coupled to a single, comparator, cell which feeds back to every cell the average phase 
of the neurons of the system. Equation (1) takes, then, the following form: 

(2) 

Let us point out an important characteristic of the model: it does not possess any 
intrinsic geometry and the only thing that distinguishes between the various sites is 
the external stimulus mi. 

In [IO] we have studied the comparator model under the influence of a uniform 
excitation, i.e. wi = w, for is k( < N )  and zero elsewhere. Our principal findings can 
be simply summarized. 

For all values of wo lower than some critical value U,,, depending on the excited-sites 
fraction k / N ,  the phases tend to separate to two perfectly synchronized classes 
corresponding to the excited and the non-excited sites. Beyond the critical value of 
oo no synchronization occurs although there exists a net phase-separation of excited 
and non-excited oscillators. Thus the response ofthe system follows roughly the external 
stimulus but no fine-tuned synchronization appears possible for wo> wc.. 

Still, in view of the results for w,< wCc one would tend to consider the comparator 
model as a good synchronizer. However this assertion, based on the results of uniform 
excitations alone, would be unjustified. Thus a complete study, considering non- 
uniform excitations, seems in order at this point. 

d 1 
-= wj+f(e, - e,) dr 

e - -xej .  
O-N 

i =  1,. , . , N 

Starting from (2) and summing over all the sites we obtain: 

where 

Subtracting the two equations we have: 
d(Oi-8) 

= - 6 +f(e, - 8) - 4. 
dr 

We can now introduce a new variable - 
v i = e j - e  

in terms of which the equations read: 

dtli 
-= w ,  -w+f(vi)-6J 
dr 

(7) 

Thus, by a suitable redefinition of the dynamical variable the system decouples formally. 
As a matter of fact, the only coupling between the different sites comes from &(I): 
the latter must be computed self-consistently at each time step from the solution v, 
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itself through + ( t )  = ( I /  N) If( Bi - e). Once the q, (and $( f ) )  are obtained one can 
go back to the Os’s. It suffices to integrate equation (3): 

(8) 

As in the case of uniform excitations we can distinguish two different regimes depending 
on the magnitude of o. For o sufficiently small there exists a stationary state for ?<, 
i.e. dqi /df  =O.  In that case we have: 

(9) 
where 4 is the value of +(I) to which the evolution is attracted and which depends 
on the initial conditions. The condition for stationarity is that the magnitude of the 
RHS of (9) be smaller than the range off: If this holds then (9) can be inverted to give 
Ti : 

f (9;) = 4 -mi +o 

qi =I-’[+ -mi +GI. (10) 

We renark !hat !he attractor here is a solution that transforms nonlinearly the excitation 
mi. The details depend, of course, on the precise nature off ;  however this should not 
become apparent unless we are very near to the critical value of w.  Beyond this value 
no stationarity appears possible and 9 grows unboundedly. 

To illustrate these considerations we have performed a numerical simulation using 
an array of 100 coupled oscillators and a simple Euler integration scheme. The choice 
of the latter was dictated by its extreme simplicity. However we were able to repeat 
the whole theoretical analysis at the level of the mapping resulting from the discretized 
Euler integration scheme, reaching exactly the same qualitative conclusions as for the 
continuous equations. For the coupling function we have chosen f (U) =tanh(u). The 
ie&joii fOi this &eice is that we .W,& io :lave 
fixed point. In fact if one draws schematically the RHS of (7) for some site i one obtains 
figure 1. Thus if w; < U,, the single fixed point is stable while for of > o., no fixed 
points exist. The external stimulus used in the stimulation was chosen in the following 
way: w i = o o  for isNN/4 and w i = 0  for i 23N/4  while for N / 4 S i s 3 N / 4  oi was 
chosen randomly with uniform probability in the interval (0, U,,). Now, due to the 
absence of intrinsic geometry in the comparator model, this choice is tantamount to 
choosing mi decreasing with a constant slope from on to 0 when i goes from NI4 to 
3N/4. It turns out that with this choice of mi the basin of attraction of + = O  is 

aiiiacGoii io r,oie than 

Figure 1. Schematic representation of the RHS of (7). One stable fixed point exisu for 
D, < U<, while no fixed point can exist for U, > 0.. . 
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sufficiently large so as to attract all initial conditions starting with random &'s. Figures 
2 and 3 present two different simulations. In the former we have q,< mer. We remark 
readily that the solution is qualitatively what one would expect from (lo), a fact that 
is also quantitatively verified. Figure 3 corresponds to a case w,>o,,, in which case 
the excitation becomes supercritical at least for some 0,'s. In this case no attraction 
of the phases to the external stimulus is possible and the detailed response of the 
system depends crucially on the precise form of the coupling function f. This is clear 
in figure 3 where we can distinguish a central subcritical region, described by (10). 
The response of the system follows the inverse hyperbolic tangent roughly up  to wcr 
but beyond the critical value of wi the synchronization breaks down completely. 

We can now summarize our findings on the comparator model. This model is an 
efficient synchronizing mechanism in the presence of uniform excitations. However, 
this is no longer true when the excitation becomes non-uniform. Moreover in the latter 

i 

Figure 2. Evolution in time of the phases of an array of I00 coupled oscillators under the 
influence of a subcritical non-uniform excitation with w u =  1.6 (see text). The oscillators 
are disposed along the i-axis and their phases are given by the ordinate 8. Time evolution 
of the phases (for fired stimulus) is represented by successive snapshots displayed in 
perspective. 

i 

Figure 3. Evolution in time of the phases of an array of 100 coupled oscillators under the 
influence of a supracritical non-uniform excitation with wo= 3 (U<, =2) .  T h e  same conven- 
tions as far figure 2 are used here. 
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case the detailed response of the system depends on the coupling function f: In all 
cases we can distinguish two regimes, a subcritical one where we have a stimulus- 
induced synchronization (in the terminology of [SI) and a supercritical one where we 
observe a 'stimulus-forced' separation of the phases without fine synchronization. In 
the case of non-uniform excitations a further complication is introduced by the fact 
that the two regimes may coexist. In view of the above remarks we do  not believe that 
the comparator coupling can be an efficient mechanism for the synchronization of 

feel that the present study may serve as a starting point for further refinements. 
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